Functionally distinct tendon fascicles exhibit different creep and stress relaxation behaviour
نویسندگان
چکیده
Most overuse tendinopathies are thought to be associated with repeated microstrain below the failure threshold, analogous to the fatigue failure that affects materials placed under repetitive loading. Investigating the progression of fatigue damage within tendons is therefore of critical importance. There are obvious challenges associated with the sourcing of human tendon samples for in vitro analysis so animal models are regularly adopted. However, data indicates that fatigue life varies significantly between tendons of different species and with different stresses in life. Positional tendons such as rat tail tendon or the bovine digital extensor are commonly applied in in vitro studies of tendon overuse, but there is no evidence to suggest their behaviour is indicative of the types of human tendon particularly prone to overuse injuries. In this study, the fatigue response of the largely positional digital extensor and the more energy storing deep digital flexor tendon of the bovine hoof were compared to the semitendinosus tendon of the human hamstring. Fascicles from each tendon type were subjected to either stress or strain controlled fatigue loading (cyclic creep or cyclic stress relaxation respectively). Gross fascicle mechanics were monitored after cyclic stress relaxation and the mean number of cycles to failure investigated with creep loading. Bovine extensor fascicles demonstrated the poorest fatigue response, while the energy storing human semitendinosus was the most fatigue resistant. Despite the superior fatigue response of the energy storing tendons, confocal imaging suggested a similar degree of damage in all three tendon types; it appears the more energy storing tendons are better able to withstand damage without detriment to mechanics.
منابع مشابه
Tendon fascicles exhibit a linear correlation between Poisson's ratio and force during uniaxial stress relaxation.
The underlying mechanisms for the viscoelastic behavior of tendon and ligament tissue are poorly understood. It has been suggested that both a flow-dependent and flow-independent mechanism may contribute at different structural levels. We hypothesized that the stress relaxation response of a single tendon fascicle is consistent with the flow-dependent mechanism described by the biphasic theory ...
متن کاملEarly stage fatigue damage occurs in bovine tendon fascicles in the absence of changes in mechanics at either the gross or micro-structural level
Many tendon injuries are believed to result from repetitive motion or overuse, leading to the accumulation of micro-damage over time. In vitro fatigue loading can be used to characterise damage during repeated use and investigate how this may relate to the aetiology of tendinopathy. This study considered the effect of fatigue loading on fascicles from two functionally distinct bovine tendons: t...
متن کاملSpecialization of tendon mechanical properties results from interfascicular differences.
Tendons transfer force from muscle to bone. Specific tendons, including the equine superficial digital flexor tendon (SDFT), also store and return energy. For efficient function, energy-storing tendons need to be more extensible than positional tendons such as the common digital extensor tendon (CDET), and when tested in vitro have a lower modulus and failure stress, but a higher failure strain...
متن کاملA Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments
Introduction: Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and espe...
متن کاملStress Relaxation Mechanics in Functionally Different Tendons at the Fibre Level
Introduction Tendons are hierarchical fibre composite materials, designed for the efficient transfer of force from muscles to the skeleton, and thus displaying high tensile strength, as well as complex viscoelastic and anisotropic characteristics [1] . Although the gross viscoelastic behaviour of tendon has received considerable attention, the mechanisms by which the tissue structure facilitate...
متن کامل